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Abstract

The dynamic behavior and dynamic instability of the rotating sandwich beam with a constrained
damping layer subjected to axial periodic loads are studied by the finite element method. The influences of
rotating speed, thickness ratio, setting angle and hub radius ratio on the resonant frequencies and modal
system loss factors are presented. The regions of instability for simple and combination resonant
frequencies are determined from the Mathieu equation that is obtained from the parametric excitation of
the rotating sandwich beam. The regions of dynamic instability for various parameters are presented.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In three-layer damped sandwich beams, the viscoelastic material (VEM) goes through
considerable shear strain as the structure bends. The VEM can dissipate the energy and
consequently attenuate the vibration response. In recent years, the use of viscoelastic materials as
constrained damping layers to control vibration of elastic structures has been studied extensively.
Kerwin [1] first discussed the damping of flexural waves due to a constrained viscoelastic layer. Di
Taranto [2] derived the sixth order differential equation of motion for constrained layer damped
beams with arbitrary boundary conditions. The loss factors are demonstrated to be independent
of boundary conditions when a certain vibration frequency is given. Bhimaraddi [3] solved both
resonant frequencies and loss factors for a simply supported sandwich beam with a constrained
damping layer. In Ref. [4], Rao reformulated the problems of Ref. [2] by an energy approach and
obtained exact solutions for various boundary conditions. Johnson and his co-workers [5–6] used
the finite element procedure to solve the problem for beams and plates with constrained
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viscoelastic layers. Fasana and Marchesiello [7] calculated mode shapes, frequencies, and loss
factors by Rayleigh–Ritz method. Polynomials which satisfy the geometric boundary conditions
were chosen as admissible functions. The vibration control in machines and structures using
viscoelastic damping was studied by Nakra [8]. The use of viscoelastic damping in composite
laminates for the active and passive vibration control and noise suppression had been proposed by
Sung and Kam [9]. The vibration control of rotating beams with an active constrained damping
layer was presented by Baz and Ro [10].
The problems of the dynamic instability of beams under axial periodic loads were presented in

the monograph by Bolotin [11]. The method of harmonic balance method was used to solve the
Mathieu equation and obtain the unstable regions. Hsu [12] applied the perturbation and constant
variation methods to a system having multiple degrees of freedom to obtain unstable regions for
simple and combination resonant frequencies. Saito and Otomi [13] used Hsu’s method to obtain
the unstable regions for viscoelastically supported beams. Cederbaum and Mond [14] investigated
the dynamic stability of a viscoelastic column subjected to a periodic longitudinal load. Kim and
Kim [15] derived the governing equation from Hamilton’s principle with Boltzmann’s
superposition principle for linear viscoelastic constitutive equation. The finite element method
and the method of multiple scales were used to determine the unstability regions. The dynamic
stability problems of beams and frames were also studied by Briseghella and his co-workers [16]
by using the finite element method.
The dynamics of rotating beams have been an important consideration for turbomachines.

Putter and Manor [17] presented the lead–lag natural frequencies of a radial beam mounted on a
rotating disc at a 901 setting angle. The free vibration frequencies of rotating Timoshenko beams
have been extensively studied by Yokoyama [18]. Dokainish and Rawtani [19] used a finite
element technique to determine the natural frequencies and the mode shapes of a cantilever plate
mounted on a rotating disc. Hoa [20] investigated the free vibration of a rotating beam with a tip
mass. The setting angle was found to have a significant effect on the first mode frequencies but not
on the higher frequencies. Chen and Chen [21] studied the vibration and stability of cracked thick
rotating blades by the finite element method. Abbas [22] investigated the effects of rotating speed
and root flexibilities on the static buckling loads and on the unstable region of a Timoshenko
beam by finite element method. The dynamic stability problems of rotating blades with geometric
non-linear were studied by Chen and Peng [23]. The dynamic stability of cracked rotating beams
was also present by Chen and Shen [24].
In this paper, a rotating sandwich beam with a constrained damping layer subjected to an axial

periodic load is studied. The effects of rotating speed, setting angle, hub radius ratio, and core
thickness ratio are considered. The influences of those parameters on the resonant frequencies and
modal system loss factors are discussed. The regions of instability for simple and combination
resonant frequencies are determined by Hsu’s method. The effects of various parameters on the
dynamic stability region are also studied.

2. Finite element model

In this present study, a finite element method is applied to simulate dynamic stability problems
of a rotating sandwich beam with a constrained damping layer subjected to an axial periodic load.

ARTICLE IN PRESS

C.-Y. Lin, L.-W. Chen / Journal of Sound and Vibration 267 (2003) 209–225210



The geometry of a rotating sandwich beam with a fully covered viscoelastic layer is shown in
Fig. 1(a). The setting angle y is the angle between the mid-plane of the sandwich beam and the
plane of rotation is shown in Fig. 1(b).
The finite element model is developed based on the following assumptions: (1) The transverse

displacement w is the same for all three layers. (2) The rotary inertia and shear deformations in the
constrained layer and base beam are negligible. (3) Linear theories of elasticity and viscoelasticity
are used. (4) No slip occurs between the layers and there is perfect continuity at the interface. (5)
Young’s modulus of the viscoelastic material is negligible compared to the elastic material.
As shown in Fig. 2, the element model presented here consists of two nodes and each node has

four degrees of freedom. Nodal displacements are given by

fDðeÞg ¼ f uci ubi wi fi ucj ubj wj fj g
T; ð1Þ

where i and j are elemental node numbers. The notations uc; ub; w and f are the axial displacement
of the constrained layer, the axial displacement of the base beam, the transverse displacement and
the rotational angle, respectively. They can be expressed in terms of nodal displacements and finite
element shape functions.

uc ¼ ½Nc�fDðeÞg; ub ¼ ½Nb�fDðeÞg; w ¼ ½Nw�fDðeÞg and f ¼ ½Nw�0fDðeÞg; ð2Þ
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Fig. 1. The co-ordinates of the rotating sandwich beam. (a) Rotating sandwich beam with fully covered viscoelastic

layer. (b) Definition of setting angle.
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where the prime denotes differentiation with respect to axial co-ordinate x and the shape
functions are given by

½Nc� ¼ ½ 1	 z 0 0 0 z 0 0 0 �;

½Nb� ¼ ½ 0 1	 z 0 0 0 z 0 0 �

and

½Nw� ¼ ½ 0 0 1	 3z2 þ 2z3 ðz	 2z2 þ z3ÞLe 0 0 3z2 	 2z3 ð	z2 þ z3ÞLe �; ð3Þ

where z ¼ x=Le and Le is the length of the element.

2.1. Base beam and constraining layers

The potential energy of the base beam and the constrained layer is written as

U
ðeÞ
k ¼

1

2

Z Le

0

EkAk

@uk

@x

� �2
dx þ

1

2

Z Le

0

EkIk

@w

@x

� �2
dx; k ¼ b; c; ð4Þ

where E; A and I are the Young’s modulus, cross-section and moment of inertia, respectively. The
notations b and c represent the base beam and the constraining layer, respectively.
The kinetic energy of beam and constraining layers is written as

T
ðeÞ
k ¼

1

2

Z Le

0

rkAk
@uk

@t

� �2
dx þ

1

2

Z Le

0

rkAk
@w

@t

� �2
dx; k ¼ b; c; ð5Þ

where r is the mass density.
By substituting Eq. (2) into Eqs. (4) and (5), the element potential energy and the kinetic energy

of the base beam and the constraining layer can be rewritten as

U
ðeÞ
k ¼ 1

2
fDðeÞgTð½K ðeÞ

ku � þ ½K ðeÞ
kw�ÞfD

ðeÞg; k ¼ b; c ð6Þ

and

T
ðeÞ
k ¼ 1

2
f ’DðeÞgTð½M ðeÞ

ku � þ ½M ðeÞ
kw�Þf ’D

ðeÞg; k ¼ b; c; ð7Þ
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Fig. 2. A sandwich beam element.
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where

½K ðeÞ
ku � ¼ ½K ðeÞ

bu � þ ½K ðeÞ
cu � ¼ EbAb

Z Le

0

½Nb�0T½Nb�0dx þ EcAc

Z Le

0

½Nc�0T½Nc�0 dx;

½K ðeÞ
kw� ¼ ½K ðeÞ

bw � þ ½K ðeÞ
cw � ¼ EbIb

Z Le

0

½Nw�00T½Nw�00 dx þ EcIc

Z Le

0

½Nw�00T½Nw�00 dx;

½M ðeÞ
ku � ¼ ½M ðeÞ

bu � þ ½M ðeÞ
cu � ¼ rbAb

Z Le

0

½Nb�T½Nb� dx þ rcAc

Z Le

0

½Nc�T½Nc� dx;

½M ðeÞ
kw� ¼ ½M ðeÞ

bw� þ ½M ðeÞ
cw � ¼ rbAb

Z Le

0

½Nw�T½Nw�dx þ rcAc

Z Le

0

½Nw�T½Nw� dx

and the dot denotes differentiation with respect to time t.

2.2. VEM layer

The axial displacement uv and shear strain gv of VEM layer derived from the kinematic
relationships between the constraining layer and the base beam by Mead and Markus [25] are
expressed as follows:

uv ¼
uc þ ub

2
þ
ðhc 	 hbÞ

4

@w

@x
and gv ¼

uc 	 ub

hv

þ
@w

@x

ðhc þ 2hv þ hbÞ
2hv

: ð8Þ

By substituting Eq. (2) into Eq. (8), gv and uv can be expressed in terms of nodal displacements
and element shape functions:

uv ¼ ½Nv�fDðeÞg and gv ¼ ½Ng�fDðeÞg; ð9Þ

where

½Nv� ¼
1

2
ð½Nc� þ ½Nb�Þ þ

ðhc 	 hbÞ
4

½Nw�0;

and

½Ng� ¼
ð½Nc� 	 ½Nb�Þ

hv

þ
ðhc þ 2hv þ hbÞ½Nw�0

hv

:

The potential energy of VEM layer due to the shear strain is written as

U ðeÞ
v ¼

1

2

Z Le

0

GvAvg2v dx; ð10Þ

where Av is the cross-section area and Gv is the complex shear modulus of VEM layer.
The kinetic energy of VEM layer is written as

T ðeÞ
v ¼

1

2

Z Le

0

rvAv
@uv

@t

� �2
þ

@w

@t

� �2( )
dx: ð11Þ
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Substituting Eq. (2) into Eqs. (10) and (11), the potential energy and kinetic energy of VEM layer
can be obtained

U ðeÞ
v ¼

1

2
fDðeÞgT½K ðeÞ

vg �fD
ðeÞg ð12Þ

and

T ðeÞ
v ¼

1

2
f ’DðeÞgT½M ðeÞ

v �f ’DðeÞg; ð13Þ

where

½K ðeÞ
vg � ¼ GvAv

Z Le

0

½Ng�T½Ng� dx

and

½M ðeÞ
v � ¼ rvAv

Z Le

0

½Nv�T½Nv�dx þ rvAv

Z Le

0

½Nw�T½Nw�dx:

2.3. Work done due to rotation

The element work of the sandwich beam due to the centrifugal forces is written as [20]

W ðeÞ
c ¼ 	

1

2

Z Le

0

Atsx
@w

@x

� �2
dx þ

1

2

Z Le

0

rtAtO2 sin
2 yw2 dx; ð14Þ

where O is the rotating speed, At is the cross-section of the system, rt is the density of the system
and sx is the radial stress created by centrifugal forces acting on any section at a distance x from
the left end of the element and can be expressed as

sx ¼ rtO
2 	rx 	 mLex 	

x2

2
þ c

� �
with c ¼ rLeðN 	 mÞ þ

1

2
L2eðN

2 	 m2Þ: ð15Þ

In the above equation, r is the hub radius, N is the total number of elements of the sandwich beam
and m is the number of elements before and not including the element under consideration.
From Eq. (2) and Eq. (14), the work done by centrifugal force can be rewritten as

W ðeÞ
c ¼ 1

2
fDðeÞgTð½K ðeÞ

c1 � þ ½K ðeÞ
c2 �ÞfD

ðeÞg; ð16Þ

where

½K ðeÞ
c1 � ¼ 	

1

2

Z Le

0

Atsx½Nw�0T½Nw�0 dx;

½K ðeÞ
c2 � ¼ rtAtO2 sin 2y

Z Le

0

½Nw�T½Nw� dx:

2.4. Work done by axial periodic loads

The element work done by axial periodic loads PðtÞ is written as

W ðeÞ
p ¼

1

2

Z Le

0

PðtÞ
@w

@x

� �2
dx; ð17Þ
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where PðtÞ ¼ Pd cos$t; $ is the excitation frequency, Pd ¼ bPcr; b is the dynamic load factor and
Pcr ¼ p2EbIb=ð2LÞ2 is the critical load of the base beam.
Substituting Eq. (2) into Eq. (17), the work done by the axial periodic load can be rewritten as

W ðeÞ
p ¼

1

2
fDðeÞgTPðtÞ½K ðeÞ

p �fDðeÞg; ð18Þ

where

½K ðeÞ
p � ¼

Z Le

0

½Nw�0T½Nw�0dx:

3. Equations of motion

The element equations of motion for a rotating sandwich beam with a constrained damping
layer subjected to an axial periodic load can be derived by using the extended Hamilton’s principle

d
Z t2

t1

ðT ðeÞ 	 U ðeÞ þ W ðeÞ
c þ W ðeÞ

p Þ dt ¼ 0; ð19Þ

where T ðeÞ is the element kinetic energy and U ðeÞ is the element potential energy.
Substituting Eqs. (6), (7), (12), (13), (16) and (18) into Eq. (19), the element equations of motion

for the sandwich beam element are obtained as follows:

½M ðeÞ�f .DðeÞg þ ½K ðeÞ�fDðeÞg 	 bPcr cos$t½K ðeÞ
P �fDðeÞg ¼ 0; ð20Þ

where

½M ðeÞ� ¼ ½M ðeÞ
bu � þ ½M ðeÞ

bw� þ ½M ðeÞ
cu � þ ½M ðeÞ

cw � þ ½M ðeÞ
v �

and

½K ðeÞ� ¼ ½K ðeÞ
bu � þ ½K ðeÞ

bw � þ ½K ðeÞ
cu � þ ½K ðeÞ

cw � þ ½K ðeÞ
vg � þ ½K ðeÞ

c1 � 	 ½K ðeÞ
c2 �:

Assembling of each element, the equations of motion of global system can be expressed as

½M�f .Dg þ ½K �fDg 	 bPcr cos$t½Kp�fDg ¼ 0: ð21Þ

In order to obtain an approximate solution, the nodal displacements fDg can be assumed as

fDg ¼ ½F�fGg; ð22Þ

where ½F� is a normalized modal matrix of ½M�	1½K� and fGg is a new set of generalized co-
ordinates. Substitute Eq. (22) into Eq. (21), the Eq. (21) can be transformed to the following N

coupled Mathieu equations:

.Gm þ ðon

mÞ
2Gm þ bPcr cos ð$tÞ

XN

n¼1

bn

mnGn ¼ 0; m ¼ 1; 2;y;N; ð23Þ
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where ðon
mÞ
2 are the eigenvalues of ½M�	1½K � and bn

mn are the elements of the complex matrix
½B� ¼ 	½F�	1½M�	1½Kp�½F�: on

m and bn
mn are written as

on

m ¼ om;R þ iom;I ; bn

mn ¼ bmn;R þ ibmn;I and i ¼
ffiffiffiffiffiffiffi
	1

p
:

4. Regions of instability

The boundaries of unstable regions are studied in this section. Hsu’s [12] procedure is applied to
solve the Mathieu Eq. (23) and the regions of instability for simple and combination resonances of
sum and difference types have been determined. The results are obtained as follows.
(A) Simple resonance: In this case, the boundaries of the unstable regions are given by

$

2o0
	 %om;R

����
����o14 b2ðb2mm;R þ b2mm;I Þ

%o2m;R
	 16 %o2m;I

" #1=2
; m ¼ 1; 2;y;N; ð24Þ

where

o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbIb=rbAbL4

q
; %om;R ¼ om;R=o0 and %om;I ¼ om;I=o0:

When damping is negligible, the unstable regions are

$

2o0
	 %om;R

����
����o14jbbmm;Rj

%om;R
;m ¼ 1; 2;y;N: ð25Þ

(B) Combination resonance of sum type: The boundaries of the unstable regions in this case are
given by

$

2o0
	
1

2
ð %om;R þ %on;RÞ

����
����o ð %om;I þ %on;I Þ

8ð %om;I %on;I Þ
1=2

b2ðbmn;Rbnm;R þ bmn;I bnm;I Þ
%om;R %on;R

	 16 %om;I %on;I

� �1=2
;

man; m; n ¼ 1; 2;y;N: ð26Þ

When damping is negligible, the unstable regions are

$

2o0
	
1

2
ð %om;R þ %on;RÞ

����
����o14 b2ðbmn;Rbnm;RÞ

%om;R %on;R

� �1=2
;

man; m; n ¼ 1; 2;y;N: ð27Þ

(C) Combination resonance of difference type: The boundaries of the unstable regions in this
case are given by

$

2o0
	
1

2
ð %on;R 	 %om;RÞ

����
����o ð %om;I þ %on;I Þ

8ð %om;I %on;I Þ
1=2

b2ðbmn;I bnm;I 	 bmn;Rbnm;RÞ
%om;R %on;R

	 16 %om;I %on;I

� �1=2
;

n > m; m; n ¼ 1; 2;y;N: ð28Þ
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When damping is negligible, the unstable regions are

$

2o0
	
1

2
ð %om;R þ %on;RÞ

����
����o14 b2ð	bmn;Rbnm;RÞ

%om;R %on;R

� �1=2
; n > m; m; n ¼ 1; 2;y;N: ð29Þ

5. Numerical results and discussion

The vibration and dynamic stability problems of the rotating sandwich beam with a constrained
damping layer are studied by the finite element method. The effects of rotating speed, core
thickness ratio, setting angle and hub radius ratio are considered.
The resonant frequencies and modal loss factors of the cantilever sandwich beam with various

values of loss factor of VEM are solved in Table 1 and compared with the results of Ref. [4]. The
resonant frequencies of rotating beams with different rotating speeds are also obtained in Table 2
and the results compared with Ref. [17]. We can see that the present results are in good agreement
with those of Refs. [4] and [17].
The dynamic behaviors of the rotating sandwich beam with a constrained damping layer are

first investigated. The materials properties and geometrical parameters are shown in Table 3. Let
PðtÞ ¼ 0; the characteristic eigenvalue equations of a rotating sandwich beam can be obtained
from the resulting equations:

f½K � 	 ðonÞ2½M�gfFg ¼ 0; ð30Þ

where on is complex radian frequency (rad/s) and fFg is corresponding eigenvector. The complex
eigenvalues ðonÞ2 is expressed

ðonÞ2 ¼ o2ð1þ iZÞ; ð31Þ

where Z is the modal system loss factor and o is the resonant frequency.
The effects of rotating speed (O), core thickness ratio ðhv=hbÞ; setting angle ðyÞ and hub radius

ratio ðr=LÞ on the resonant frequencies and modal loss factors are shown in Figs. 3–6, respectively.
The effect of the rotating speed is presented in Fig. 3. It can be seen that the resonant frequency
increases and modal system loss factor decreases with the increasing of the rotating speed. The
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Table 1

Comparison of results of the cantilever VEM sandwich beam, f (Hz)-resonant frequency, %Z-modal loss factors (=modal
system loss factor/core loss factor)

Zc f1 %Z1 f2 %Z2 f3 %Z3 f4 %Z4

0.1 Ref. [4] 64.1 0.2815 296.4 0.2424 743.7 0.1540 1393.9 0.0889

Present 63.8 0.2850 295.4 0.2483 745.0 0.1584 1404.5 0.0915

0.6 Ref. [4] 65.5 0.2460 298.9 0.2323 745.5 0.1528 1394.9 0.0886

Present 65.4 0.2492 298.5 0.2384 747.3 0.1572 1405.5 0.0913

1 Ref. [4] 67.4 0.2022 302.8 0.2177 748.6 0.1502 1396.6 0.0881

Present 67.5 0.2053 303.3 0.2241 751.4 0.1550 1407.4 0.0910

1.5 Ref. [4] 69.9 0.1531 308.9 0.1975 754.0 0.1460 1399.7 0.0873

Present 70.1 0.1559 310.7 0.2044 759.0 0.1513 1410.9 0.0905
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effect of the core thickness ratio is illustrated in Fig. 4. It shows that the resonant frequencies
decrease with an increase in core thickness ratio. The modal system loss factor increases as the
core thickness ratio increases. In Fig. 5, the influence of setting angle is discussed. The resonant
frequencies decrease and the modal system loss factor increase as the setting angle increases. But,
it is observed that the changes of the second mode for the resonant frequency and modal system
loss factor due to y are very small. Since O2 sin2 y does not change with different modes, the effect
of setting angle becomes negligible beyond the second mode. The effects of hub radius ratio are
studied in Fig. 6. The resonant frequency increases as the hub radius increases. The modal system
loss factor decreases rapidly as the hub radius ratio increases.
The dynamic instability of a rotating sandwich beam with a constrained damping layer

subjected to an axial periodic load is studied in the following discussions. The effects of rotating
speed, setting angle, hub radius ratio and core thickness ratio for the stability boundaries are
presented in Figs. 7–14, respectively. The effects of the rotating speed on the dynamic stability of
the rotating sandwich beam are shown in Figs. 7–8. Fig. 7 illustrates that increasing of the
rotating speed will increase the excitation frequency ð$Þ so that the unstable regions shift to the
right. The width of unstable region (wur) decreases and the critical excitation parameter ðbcrÞ
increases when rotating speed increases that shown in Fig. 8. The critical excitation parameter can
be determined as the radical in Eqs. (24), (26) and (28) is equal to zero and the width of unstable
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Table 2

Comparisons of results of a rotating beam for first two resonant frequencies ðo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAL4=EI

p
Þ; where O0 ¼ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAL4=EI

p
;

R ¼ r=L; y ¼ 901

O0 Mode 1 Mode 2

R ¼ 0 R ¼ 1 R ¼ 0 R ¼ 1

2 Present work 3.623 4.403 22.528 23.282

Ref [17] 3.612 4.401 22.526 23.280

5 Present work 4.075 7.415 24.952 28.927

Ref. [17] 4.074 7.412 24.95 28.924

10 Present work 5.052 13.261 32.124 43.238

Ref. [17] 5.049 13.258 32.12 43.227

Table 3

Material properties and geometrical parameters

Young’s modulus Eb;Ec ðGPaÞ 70

Shear modulus G ðMPaÞ 0.2615

Base beam thickness hb ðmÞ 0.0015

Constrained layer thickness hc ðmÞ 0.00015

Loss factor of VEM Zc 0.38

Length ðmÞ 0.3m

Density rb; rc ðkg=m
3Þ 2800

Density rv ðkg=m
3Þ 1100
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region is calculated at b ¼ 0:5: Obviously, the higher rotating speed will increase the stiffness of
the sandwich beam and make the sandwich beam more stable. Figs. 9 and 10 illustrate the effects
of the setting angle on the dynamic stability of a rotating sandwich beam. We can see that the
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Fig. 3. The effect of rotating speed O (r.p.m.) on resonant frequencies o (Hz) and modal system loss factors Z; where
r=L ¼ 0; hv=hb ¼ 0:5; and y ¼ 01; (a) first mode, (b) second mode.

Fig. 4. The effect of thickness ratio hv=hb on resonant frequencies o (Hz) and modal system loss factors Z; where
O ¼ 1000 (r.p.m.), r=L ¼ 0; and y ¼ 01; (a) first mode, (b) second mode.
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unstable regions shift to left when the setting angle increases. It is due to the decrease of the
resonant frequency. But, the simple resonance o2 is changed very slightly so that the effect of
setting angle on the dynamic stability problem is negligible for higher simple resonances. Fig. 10
shows that the width of unstable regions increases as the setting angle increases and the critical
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excitation parameter changes slightly due to the increase of setting angles. It shows that the
rotating beam with a larger setting angle will get lower system stiffness. Consequently, increasing
the setting angle makes the rotating sandwich beam more unstable. The effects of the hub radius
ratio on the dynamic stability of the rotating sandwich beam are shown in Figs. 11–12. Fig. 11
shows that the unstable regions shift to the right as the hub radius ratio increases. The width of
unstable region decreases as hub radius ratio increases shown in Fig. 12(a). The critical excitation
parameter changes slightly as the hub radius ratio increases as shown in Fig. 12(b). This case
shows that larger hub radius ratio makes the rotating sandwich beam more stable. Figs. 13 and 14
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illustrate the effects of the core thickness ratio on the dynamic stability of the rotating sandwich
beam. The unstable regions for different core thickness ratio are shown in Fig. 13. As the core
thickness ratio increases, the excitation frequency decreases so that the unstable region shifts to
the left. The higher core thickness ratio induces higher damping effect so that the values of the
critical excitation parameter increase due to the increase of the core thickness ratio. The width of
unstable region decreases with an increase in the core thickness ratio. Consequently, the larger
thickness ratio makes the rotating sandwich beam more stable.
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6. Conclusion

The dynamic stability of a rotating sandwich beam with a constrained damping layer has been
studied by the finite element method. The effects of rotating speed, setting angle, hub radius ratio
and core thickness ratio have been examined. Increasing the rotating speed, hub radius and
thickness of VEM layer will decrease the width of unstable region and increase the critical
excitation parameter of the sandwich beam. The system is more stable as the rotating speed, hub
radius and thickness of VEM layer increase. The larger setting angle will reduce the stiffness of the
rotating sandwich beam. The rotating sandwich beam is more unstable at the large setting angle.
It is noted that the effect of the setting angle on the dynamic stability problem can be negligible for
higher simple resonant frequency case.

Appendix A. Nomenclature

Ab;c;v cross-section of base beam, constrained layer and VEM layer
At cross-section of system
b beam width
Eb;c Young’s modulus of base beam and constrained layer
G shear modulus of VEM
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Gv complex shear modulus of VEM Gv ¼ Gð1þ iZcÞ
hb;c;v thickness of base beam, constrained layer and VEM layer
Ib;c moment of inertia of base beam and constrained layer
½K � global stiffness matrix
Le length of a element
L beam length
m number of elements before and not including the element under consideration
½M� global mass matrix
N total number of elements
Nc;b;w;v;g shape function of the axial displacement of the constrained layer, the axial

displacement of the base beam, the transverse displacement, the axial displacement
of VEM layer and the shear strain of VEM layer

Pd dynamic and static load
Pcr critical load of base beam Pcr ¼ p2EbIb=ð2LÞ2

r hub radius
ub;c axial deformation of base beam and constrained layer
w transverse displacement
wur width of unstable region
O rotating speed
y setting angle
gv shear strain of VEM layer
rb;c;v mass density of base beam, constrained layer and VEM layer
rt mass density of system
fDg nodal displacement vector
Z modal system loss factor
Zc loss factor of VEM layer

%Z modal system loss factor/loss factor of VEM layer, %Z ¼ Z=Zc

on complex radian frequency
$ excitation radian frequency
o resonant frequency
o0 frequency of base beam, o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbIb=rbAbL4

p
%o non-dimensional frequency, %o ¼ o=o0
b dynamic load factor
bcr critical excitation parameter
fFg corresponding eigenvector of ½M�	1½K �
f rotational angle
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